2B + G + M + 7 Mansoura Development Doha, Qatar

Penn State Architectural Engineering Senior Capstone Project Ramy Labna | Construction Option | Advisor: Prof Ray Sowers

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- Analysis 3: Field Labor Management & Alteration
- Conclusion

Analysis 1: Precast Vs. Cast in Place

Photo Courtesy of www.mcentirerentalproperties.com

Analysis 2: Comparison of Construction Practices between US & Qatar

Photo Courtesy of www.cutcaster.com

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- Analysis 3: Field Labor Management & Alteration
- Conclusion

Building Name | 2B + G + M + 7 Development at Mansoura Size | 106,000 Gross Square Feet No. of Stories | 9 stories above grade & 2 stories below Dates of Construction | April 15, 2013 – April 15, 2015 Cost of overall Project | \$7M Project Delivery Method | Design-Bid-Build
Payment Method | Lump Sum Method
Owner | Fakhriya Radhwani
| Project Delivery Method | Design-Bid-Build
| Design-Bid-Build
| Payment Method | Lump Sum Method
| Owner | Fakhriya Radhwani
| Project Design | Project | Petra Design
| Project Delivery Method | Design-Bid-Build
| Design-Bid-Build
| Owner | Fakhriya Radhwani
| Project Design | Project | Petra Design | Project | Petr

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

Opportunity Identification

- Schedule & Construction acceleration scenarios
- Reduction of Schedule with the use of Precast Panels

Existing System

- Cast in Place Concrete Entire Structure
- Concrete transported in unhardened state as ready-mix
- Used for its long-term durability & structural support
- Current superstructure schedule takes approximately 13 months

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

<u>Current Design</u>

- 10" of concrete with no insulation
- Paint Finish

Proposed Design

- 2" of Rigid Insulation
- Sandwiched by two 3" Concrete panels
- Paint Finish

Photo Courtesy of www.enconunited.com

Existing System

- Cast in Place Concrete Entire Structure
- Concrete transported in unhardened state as ready-mix
- Used for its long-term durability & structural support

Proposed System

- Precast Concrete Exterior Wall Panels
- Floor Beams & Columns and Slabs are cast in place

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- Analysis 2: Comparison of Construction Practices between US & Qatar
- Analysis 3: Field Labor Management & Alteration
- Conclusion

North Elevation

<u>Design</u>

- Aim: To reduce amount of panels used
- Panels designed to fit between each floor beams
- Repetitive floors (1-7)
- Same concrete mold can be used for multiple panels
- Total of 33 Different Panels
- West & East façades are completely identical

West & East Elevation

Analysis 1: Construction of Precast Vs. Cast in Place Concrete

OUTLINE

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

Manufacturing

- Offsite controlled working environment
- Better efficiency due to repetitive process
- Favorable working conditions
- Less material wasted
- Better safety practices

Photo Courtesy of www.concretetissues.com

Quality

- PCI Certified
- Controlled air entrainment and cuing procedures
- Better & more consistent quality of work

Photo Courtesy of www.atmiprecast.com

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

<u>Delivery</u>

- 12' x 50' truck bed
- Transported on non-staining, shock absorbing material
- Manage 'just-in-time' deliveries
- Delivery within 20-35 miles

Photo Courtesy of www.truckfax.blogspot.com

<u>Erection</u>

- Duration of erection reduced
- 40 ton lifting crane
- 1 floor erected per day

2B + G + M + 7 Mansoura Development

Photo Courtesy of www.sicklesteelcranes.com

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

Cast in Place Concrete

- Price retrieved from RSMeans (Location factor: Philadelphia)
- Cost includes Labor, Material & Erection
- Cost: \$550.50/CY

Precast Concrete Wall Panels

- Price retrieved from Encon United Precast Company
- Cost includes Material, Transportation, Insulation & Erection
- Cost: \$25/SF without architectural finish \$30/SF with architectural finish

Cost Comparison

Cost Implications		
Cast in Place Concrete	\$ 656,416.20	
Precast Concrete Panels	\$1,116,145.20	
Cost Difference	\$459,729.00	

• Further detail can be seen in Appendix I in final report

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- ❖ Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

Actual Savings

- Superstructure completed on 17th Sept, 2014 (9 days ahead of schedule)
- Minimum difference due to:
 - > Sequencing and coordination of current schedule

Proposed Schedule Savings

Building Enclosure Activity			
tivity	Duration		
st in Place Concrete Wall			
rmwork/Reinforcement/Concrete sting	122		
aterproofing & Cement Sandscreed	74		
Total	196		
ecast Panels			
ect Panels	11		
al Joint/Clean Panels	40		
Total	51		
ys Saved on Enclosure	145		
	,		

Table 2.1 – Time savings for building enclosure

• Further detail can be seen in Appendix H for revised schedule

Analysis 1: Construction of Precast Vs. Cast in Place Concrete

OUTLINE

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- Analysis 2: Comparison of Construction Practices between US & Qatar
- Analysis 3: Field Labor Management & Alteration
- Conclusion

Thermal Properties

- Affects users comfort level
- Notes disparity of energy efficiency

R-Value Analysis

• Performance of system in terms of Heating & Cooling

Summer Loads				
System	R-value	Change in Temp	Area (sqft)	Heat Transfer (BTU/hr)
roposed	9.777913	52	4237.3	22,534.42
urrent	1.63333	52	4237.3	134,902.07
Difference				(112,367.65)

Winter Loads				
System	R-value	Change in Temp	Area	Heat Transfer (BTU/hr)
Proposed	9.777913	11	4237.3	4,766.90
Current	1.63333	11	4237.3	28,536.98
Difference				(23,770.08)

Analysis 1: Construction of Precast Vs. Cast in Place Concrete

Winter Condensation Analysis

Summer Condensation Analysis

• Addition of Vapor Barrier - \$4,024.44

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
 - Introduction
 - Design
 - Manufacturing & Quality
 - Delivery & Erection
 - Cost Impact
 - Schedule Impacts
 - Mechanical Breadth
 - Conclusions & Recommendations
- Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

<u>Conclusions</u>

- Accelerated Schedule by 9 days
- Increase in Superstructure cost by \$459,729
- Better thermal properties using Precast

Recommendations

- Resizing of Mechanical Equipment
- Re-sequencing of activities
- Use of Precast Concrete Wall Panels

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
 - Introduction
 - Common Construction Practices in Qatar
 - Case Study: HHD Project (Penn State)
 - Comparison of Labor Wages
 - Comparison of Safety Programs
 - Comparison of Quality Control Programs
 - Conclusions & Recommendations
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

Opportunity Identification

- Improvement of construction practices
- Improve schedule
- Reduce project cost
- Improve overall quality

Potential Comparisons

- Labor Wages
- Safety Programs
- Quality Control Programs

Analysis 2: Comparison of Construction Practices

OUTLINE

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
 - Introduction
 - Common Construction Practices in Qatar
 - Case Study: HHD Project (Penn State)
 - Comparison of Labor Wages
 - Comparison of Safety Programs
 - Comparison of Quality Control Programs
 - Conclusions & Recommendations
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

Cast in Place Construction

- Cheaper
- Material readily available

Photo Courtesy of www.allsortsconcrete.com

Material/Resource Availability

- Shipped from neighboring countries
- No natural resources
- Special material delivery can be timely process

Photo Courtesy of Google Maps

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
 - Introduction
 - Common Construction Practices in Qatar
 - Case Study: HHD Project (Penn State)
 - Comparison of Labor Wages
 - Comparison of Safety Programs
 - Comparison of Quality Control Programs
 - Conclusions & Recommendations
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

Photo Courtesy of www.opp.psu.edu

Human Health Development (HHD) Project

- Academic/Research building
- 93,000 SF of new construction
- Anticipated completion by Spring 2015
- Multiple Prime Contract

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
 - Introduction
 - Common Construction Practices in Qatar
 - Case Study: HHD Project (Penn State)
 - Comparison of Labor Wages
 - Comparison of Safety Programs
 - Comparison of Quality Control Programs
 - Conclusions & Recommendations
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

HHD Project

- State funded job
- State prevailing wage rate

) .	Effective Date	Hourly Rate	Fringe Benefits	Total
penters	6/1/12	\$25.98	\$11.67	\$37.65
	6/1/13	\$26.09	\$12.51	\$38.60
	6/1/14	\$26.21	\$13.35	\$39.56
ctricians	12/23/11	\$35.76	\$21.10	\$60.81
	12/21/12	\$37.71	\$21.10	\$58.81
	12/21/13	\$39.71	\$21.10	\$60.81
nters	6/1/11	\$25.72	\$14.09	\$39.81
	6/1/12	\$26.25	\$14.56	\$40.81
	6/1/13	\$26.78	\$15.03	\$41.81
mbers	5/1/11	\$31.92	\$20.56	\$52.48
	5/1/12	\$32.67	\$20.81	\$53.48
sons	1/1/12	\$30.85	\$13.60	\$44.45
	1/1/13	\$31.45	\$14.10	\$45.55
erators	1/1/11	\$27.68	\$15.74	\$43.42
	1/1/12	\$28.08	\$16.44	\$44.52
	1/1/13	\$28.48	\$17.14	\$45.62
orers	1/1/11	\$18.27	\$10.27	\$28.41
	1/1/12	\$18.27	\$10.87	\$28.54

Table 3.1 - HHD Project Wages

Mansoura Development

- No minimum wage rate
- Free medical service
- Unskilled workers negative impact to project

	Effective Date	Hourly Rate	Fringe Benefits	Total
penters	1/1/13	\$2.40	N/A	\$2.40
ctricians	1/1/13	\$3.08	N/A	\$3.08
nters	1/1/13	\$2.74	N/A	\$2.74
mbers	1/1/13	\$2.40	N/A	\$2.40
isons	1/1/13	\$2.05	N/A	\$2.05
erators	1/1/13	\$2.43	N/A	\$2.43
orers	1/1/13	\$1.37	N/A	\$1.37

Table 3.2 - Mansoura Development Wages

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
 - Introduction
 - Common Construction Practices in Qatar
 - Case Study: HHD Project (Penn State)
 - Comparison of Labor Wages
 - Comparison of Safety Programs
 - Comparison of Quality Control Programs
 - Conclusions & Recommendations
- ❖ Analysis 3: Field Labor Management & Alteration
- * Conclusion

HHD Project

- All contractors have OSHA 30 Safety Course
- Daily Meetings to highlight safety issues
- Safety toolbox topics meeting Once a week
- Zero Recordable accidents

Mansoura Development

- No safety administration (like OSHA) in Qatar
- Abide by company own Health & Safety Policy
- 4 Step safety program:
 - Make regular job site inspections
 - > Enforce use of safety equipment
 - > Follow safety procedures
 - Provide on-going safety training
- Suspension of pay if rules not followed
- 8 recordable injuries as of yet

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- * Analysis 2: Comparison of Construction Practices between US & Qatar
 - Introduction
 - Common Construction Practices in Qatar
 - Case Study: HHD Project (Penn State)
 - Comparison of Labor Wages
 - Comparison of Safety Programs
 - Comparison of Quality Control Programs
 - Conclusions & Recommendations
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

HHD Project

- Three-Phase Control System:
 - Preparatory Phase
 - ➤ Initial Phase
 - Follow-Up Phase
- Lifetime of Building 100 years

Mansoura Development

- No actual program followed
- Engineer on site check current work
- Lifetime of Building 50-70 years

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
 - Introduction
 - Common Construction Practices in Qatar
 - Case Study: HHD Project (Penn State)
 - Comparison of Labor Wages
 - Comparison of Safety Programs
 - Comparison of Quality Control Programs
 - Conclusions & Recommendations
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

Conclusions

- Potential to cut down on project costs
- Potential delivery of project on or before time
- Huge potential to improve safety of construction site

Recommendations

- Acquire/Train more experienced workers
- OSHA trained personnel on site
- Regular unscheduled site safety inspections
- Implement Quality Control program similar to HHD Project

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- Analysis 3: Field Labor Management & Alteration
 - Introduction
 - Evaluate Current Schedule
 - Labor Increase
 - SIPS Analysis
 - Man Power Loaded Schedule
 - Conclusions & Recommendations
- Conclusion

Problem Identification

- Immense heat of summer months (Over 122 degrees)
- Government halts construction during the day
- Delays in schedule

Potential Solutions

- Re-evaluate/Re-sequence activities in schedule
- Increasing labor force pre-summer months
- SIPS implementation of superstructure
- Man Power Loaded schedule

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- Analysis 3: Field Labor Management & Alteration
 - Introduction
 - Evaluate Current Schedule
 - Labor Increase
 - SIPS Analysis
 - Man Power Loaded Schedule
 - Conclusions & Recommendations
- Conclusion

Current Schedule

- Superstructure construction goes through summer
- Floor by floor phasing
- *See Appendix E for current project schedule

Possible Solutions

- Completion of Superstructure before July, 2014
- Phasing construction by trade
- Increase man power for superstructure completion

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
 - Introduction
 - Evaluate Current Schedule
 - Labor Increase
 - SIPS Analysis
 - Man Power Loaded Schedule
 - Conclusions & Recommendations
- Conclusion

Cost Analysis

- \$1.37 Labor Cost
- 13 extra laborers added
- Overall reduction: \$22,906.40

	Cos	st Analysis	of Labor Inc	rease	
	# of Laborers	Hourly Rate	Monthly Cost	Months to complete superstructure	Total Cost
ginal Crew	53	\$1.37	\$12,779.36	13	\$166,131.68
roposed Crew	66	\$1.37	\$15,913.92	9	\$143,225.28

Table 4.1 - Analysis of labor Increase

Analysis 3: Field Labor Management & Alteration

OUTLINE

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- * Analysis 3: Field Labor Management & Alteration
 - Introduction
 - Evaluate Current Schedule
 - Labor Increase
 - SIPS Analysis
 - Man Power Loaded Schedule
 - Conclusions & Recommendations
- Conclusion

<u>SIPS</u>

- Implementation on superstructure (Concrete Casting)
- 5 activities per floor
- Construction start: 26th August, 2013
- Ground & Mezzanine floors 9900 GSF
- Floors 1-7 7900 GSF

Original Superstructure Constr. (G&M)				
Activity	Crew (Laborers)	Duration (Days)		
ns & Slabs/Ramp - work/Reinforcement/Concrete ng	20	18	Beam Form Castir	
mns & Walls forcement/Formwork/Concrete ng	20	13	Colun Reinfe Castir	
erproofing works above Slab &	4	15	Wate	
ent sand screed above water fing	4	11	Ceme	
w Block	5	12	Hollo	

Table 4.2 – Original Crews a	nd Duration Designation
(G&N	A)

Activity	Crew (Laborers)	Duration (Days)	
Beams & Slabs/Ramp - Formwork/Reinforcement/Concrete Casting	20	18	
Columns & Walls Reinforcement/Formwork/Concrete Casting	20	13	
Waterproofing works above Slab & Ramp	8	8	
Cement sand screed above water proofing	8	6	
Hollow Block	10	6	

Table 4.3 – Proposed Crews and Duratio Designation (G&M)

Original Superstructure	Constr. (1	-7)	
Activity	Crew (Laborers)	Duration (Days)	
ms & Slabs/Ramp - nwork/Reinforcement/Concrete ing	20	13	Beams Formy Castin
mns & Walls forcement/Formwork/Concrete ing	20	10	Colum Reinfo Castin
erproofing works above Slab & p	4	12	Water Ramp
ent sand screed above water ofing	4	9	Cemer
ow Block	5	15	Hollov

Table 4.4 - Original	Crews and	Duration Designation
	(1.7)	

Froposed Superstructure Constr. (1-7)				
Activity	Crew (Laborers)	Duration (Days)		
eams & Slabs/Ramp - ormwork/Reinforcement/Concrete asting	20	13		
olumns & Walls einforcement/Formwork/Concrete asting	20			
aterproofing works above Slab & amp	8	6		
ement sand screed above water roofing	8	5		
ollow Block	10	8		

Table 4.5 – Proposed Crews and Duration
Designation (1-7)

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- * Analysis 3: Field Labor Management & Alteration
 - Introduction
 - Evaluate Current Schedule
 - Labor Increase
 - SIPS Analysis
 - Man Power Loaded Schedule
 - Conclusions & Recommendations
- Conclusion

Fig 4.2 – Snapshot of SIPS Schedule

*See Appendix L for Full version of SIPS Schedule

Schedule Reduction

- New finish date: 30th May, 2014
- 120 Days ahead of schedule
 - > 27th Sept, 2014

Analysis 3: Field Labor Management & Alteration

OUTLINE

- Project Background
- Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- * Analysis 3: Field Labor Management & Alteration
 - Introduction
 - Evaluate Current Schedule
 - Labor Increase
 - SIPS Analysis
 - Man Power Loaded Schedule
 - Conclusions & Recommendations
- Conclusion

Man Power Loaded Schedule

- Based on SIPS Schedule
- Ensures SIPS feasibility
- Over-allocation of Laborers

Man Power Loading			
ctivity	Crew (Laborers)		
eams & Slabs/Ramp - ormwork/Reinforcement/Concrete asting	20		
olumns & Walls einforcement/Formwork/Concrete asting	20		
Vaterproofing works above Slab & amp	8		
ement sand screed above water roofing	8		
ollow Block	10		

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- Analysis 3: Field Labor Management & Alteration
 - Introduction
 - Evaluate Current Schedule
 - Labor Increase
 - SIPS Analysis
 - Man Power Loaded Schedule
 - Conclusions & Recommendations
- Conclusion

<u>Conclusions</u>

- Superstructure schedule reduced by 120 days
- By-pass halt in construction
- Promotion of safer site

Recommendations

- Implement SIPS over original schedule
- Further consideration to apply SIPS on all trades

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- Analysis 3: Field Labor Management & Alteration
- Conclusion

Conclusion

- Schedule acceleration primary concern for owner
- Potential in resizing of Mechanical equipment
- Potential schedule accelerations through re-sequencing of activities for Precast

Analysis 1 | Precast Vs. Cast in Place

- Accelerates schedule by 9 days
- Increases cost by \$459,729

Analysis 2 | Comparison of Construction Practices between US & Qatar

- Increase in skilled workers
- Introduction to OSHA personnel
- Implementation of Quality Control Program

Analysis 3 | Field Labor Management & Alteration

- Decreases labor cost by \$22,906.40
- Accelerates superstructure schedule by 120 days

- Project Background
- ❖ Analysis 1: Construction Precast Vs. Cast in Place Concrete
- Analysis 2: Comparison of Construction Practices between US & Qatar
- ❖ Analysis 3: Field Labor Management & Alteration
- Conclusion

THANKS!

Special Thanks

Petra Design – Mahmoud El-Salti Commitment Construction Project Team John Bechtel My Family & Friends

Academic Acknowledgements

Prof. Ray Sowers – CM Faculty Advisor

Dr. Craig Dubler

Dr. Robert Leicht

Dr. John Messner

Penn State AE Faculty

Industry Acknowledgements

